Главная >  Потенциал энергии 

 

Типы ветроэлектрических станций. Ветросиловые установки, предназначенные для получения электрической энергии, называются ветроэлектрическими установками. По назначению их разделяют на ветроэлектрические станции и специальные ветроэлектрические установки. К последним относятся так называемые ветроэлектрокотлы, установки для получения водорода и т.п.

 

Получение электроэнергии от ветросиловых установок является чрезвычайно привлекательной, но вместе с тем технически сложной задачей. Основным затруднением является переменчивость энергии ветра. Кроме того, электрический ток для практического применения должен иметь постоянное напряжение. При изменении напряжения и частоты тока вследствие некоторого колебания числа оборотов ветродвигателя необходимы специальные механизмы, которые регулируют число оборотов генератора.

 

Ветроэлектрические станции переменного тока не имеют вышеперечисленных недостатков и, кроме того, разрешают использовать обычные асинхронные двигатели, которые отличаются, как известно, простотой и дешевизной. ВЭС переменного тока строят общей мощностью 10 квт и выше; они работают по трём основными схемами:
изолированная работа ВЭС с тепловым резервным двигателем для работы в периоды безветрия и в слабоветренные дни;
общая работа ВЭС с неветровой станцией;
параллельная работа ВЭС с энергосистемой.

 

Ветроэлектрические станции (ВЭС) разделяют на станции постоянного тока и станции переменного тока. Ветроэлектрические станции постоянного тока представляют собой в большинстве случаев ветроэлектрические агрегаты мощностью от 100 Вт до 1-3 квт, которые используются для зарядки аккумуляторных батарей и питания осветительной сети, расположенной в непосредственной близости от ветроэлектрического агрегата. Более мощные ВЭС постоянного тока встречаются значительно реже. Это поясняется рядом причин:
невозможность трансформации напряжения для передачи электроэнергии на большие расстояния;
экономическая нецелесообразность применения в данное время электрохимических батарей на ветроэлектрических установках мощностью выше 3-5 квт;
невозможность практически осуществить параллельную работу с неветровыми электростанциями и системами, которые вырабатывают, как правило, трехфазный ток и т.п.

 

Изолированные ветроэлектростанции с тепловыми двигателями как резерв и ВЭС, которые работают параллельно с тепло - и гидроэлектростанциями, должны занять видное место в энергоснабжении нашего сельского хозяйства в тех районах, где скорость ветра превышает 5 м/сек.

 

Эффективность работы ВЭС выражается экономией горючего на тепловой станции и экономией воды на гидростанции. Последнее очень важно в летний и зимний периоды, если природный приток воды значительно сокращается. При работе ВЭС с резервным двигателем для бесперебойного обеспечения потребителя электроэнергией можно использовать неветровой двигатель, мощность которого составляет до 50% мощности ветродвигателя. Потребители, работа которых допускает перерывы в энергоснабжении получают питание только от ВЭС при наличии ветра. По мощности ветроэлектрические станции можно разделить на три группы:
маломощные ВЭС (0,1-1,0 квт); к ним относятся главным образом ветроэлектрические агрегаты постоянного тока, используемые для зарядки аккумуляторных батарей;
ветроэлектрические станции средней мощности (10 - 100 квт); эти станции, как правило, дают переменный ток и предназначены главным образом для общей работы с тепловым двигателем или для параллельной работы с неветровой станцией приблизительно равной мощности; в данное время количество ВЭС средней мощности увеличивается, хотя они и не получили еще широкого распространения;
большие ветроэлектростанции мощностью 100 квт и выше; такие ВЭС у нас и за границей были построены только для экспериментальной проверки принципа параллельной работы ВЭС с энергосистемой.

 

К выбору места расположения ветродвигателя необходимо проявлять особое влияние в связи с влиянием касательных напряжений и поджатая горизонтального ветрового потока, проходящего над поверхностью земли. Эти напряжения возникают при малых скоростях ветра вблизи подстилающей поверхности, а не на высотах, где скорость свободного потока достаточно велика. Скорость невозмущенного ветрового потока на достаточно большой высоте, где исключено влияние поверхностного трения, как правило, значительно больше, чем у поверхности или на стандартной высоте расположения анемометра, где обычно измеряется скорость ветра. Практически принимают, что скорость ветра на высоте увеличивается в степени 1/7 по отношению к скорости у поверхности земли.

 

Выбор участков

 

Существенное влияние на работу ВЭУ оказывают поджатие и ускорение ветрового потока, проходящего над возвышенностями Часто оказывается возможным увеличить среднюю выработку ветродвигателя, если при установке его обращать внимание на увеличение средней скорости ветра в результате явлений, подобных указанным. К месту установки ВЭУ выдвигаются следующие требования:
большая среднегодовая скорость ветра;
отсутствие высоких препятствий с подветренной стороны на расстоянии, которое определяется высотой препятствия;
плоская вершина;
выравнивающая возвышенность (с пологими склонами) на плоской равнине, островах, озерах, морях;
открытые равнины или побережье;
горные ущелья, которые образовывают туннели.

 

Касательные напряжения ветрового потока и, следовательно, возможная энергия ветра зависит от шероховатости поверхности земли в данном месте, в том числе от сооружений , деревьев, ветродвигателей и других препятствий.

 



 

Впровадження когенераційної уста. Энергосбережение при водоснабжении жилых зданий. Мониторинг по воздуху. Эффективные пути энергосбережения вмуниципальной сфере. Реструктуризация энергетики вконтексте формирования новойхозяйственной системы страны.

 

Главная >  Потенциал энергии 

0.0032